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Abstract Distributions of total water in cirrus provide important information on cloud-scale variability.
Observations of water variables in cirrus are sparse, limiting our ability to constrain factors controlling their
evolution and lifetimes. We present and analyze aircraft measurements of tropical and extratropical cirrus
total water statistics. We show that observed distributions are replicated by a parametric model that only
requires knowledge of in-cloud temperatures. We parameterize the temporal decay of cloud ice content
and distribution skewness forced by ice crystal sedimentation and find that ice water content decays at a
much faster rate than skewness in the absence of cloud ice and skewness sources. The sensitivity of
skewness to changes in ice water content is small. Our methodology and findings may prove useful for
studies addressing statistical cloud schemes and cirrus life cycles.

Plain Language Summary Probability distributions are important modeling tools to describe
the atmospheric effects of clouds. This study reports distributions of total (gas plus ice phase) water in high
tropospheric ice clouds (cirrus) obtained from measurements with research aircraft in tropical, midlatitude,
and Arctic locations. We make a first attempt to base the origin of the distributions on physical processes
and to reconstruct them with a statistical approach based on knowledge of cloud temperatures. We thereby
show that the observed, heavy tails of the total water statistics are linked to the presence of cloud ice
crystals. While cloud ice mass diminishes by ice crystal settling, the tails decay at a much slower rate. We
hope that our methodology proves to be useful in support of studies analyzing cirrus life cycles.

1. Introduction

The need to parameterize clouds and their effects in low-resolution (large-scale) weather prediction and cli-
mate models is well recognized (Randall et al., 2007). One way to tackle the cloud parameterization issue is to
assign a probability density function (PDF) to total water concentrations in atmospheric regions containing
clouds. Besides providing cloud fraction and cloud mass, the functional forms of total water statistics contain
information on cloud-scale variability that is otherwise absent in low-resolution models. The variability under-
lying such PDFs is caused by unresolved microphysical and dynamical processes. Low-order PDF moments
(mean, variance, and skewness) are used to establish links between water variables (cloud microphysics),
cloud fraction (macrophysics), and cloud-controlling factors (e.g., dynamical forcing mechanisms) on the one
hand and to derive consistent estimates of variables describing the effects of clouds (e.g., radiative fluxes) on
the other.

Relationships among water variables in tropospheric clouds on horizontal scales of some tens of kilometers
have been studied using aircraft data (Wood & Field, 2000) and large-domain cloud-resolving model simu-
lations (Tompkins, 2002). These studies clearly show that humidity, temperature, and cloud variables exhibit
significant spatial variability on the scale of grid cells in regional and global models, violating assumptions
made in some model cloud schemes that represent clouds by water variables averaged over a grid cell. Phys-
ical mechanisms, controlling factors of, and relationships among, cloud variables must be well understood in
order to safely employ PDF-based (statistical) cloud schemes across all cloud types. Linking PDF moments to
cloud microphysical processes is challenging (Klein et al., 2005; Larson & Golaz, 2005; Quaas, 2012; Tompkins,
2008). Improving statistical cloud schemes is particularly challenging for cirrus (Kärcher, 2017).
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While total water PDFs representative for a grid cell of a low-resolution model may include cloud-free regions,
focusing on in-cloud PDFs is useful for process interpretation and cloud life cycle analyses. Arguably, the lat-
ter are more challenging for cirrus than for liquid-phase clouds, as cirrus form in situ at relative humidities
substantially (many tens of percent) above ice saturation (Koop et al., 2000) and dissolve completely only at
much lower (several tens of percent) values below saturation (Ström et al., 2003). Long water phase relaxation
times in cirrus blur cloud boundaries and emphasize the continuum aspect of aerosol/cirrus systems (Kärcher
& Solomon, 1999).

Here we present an approach to construct cirrus total water PDFs from their constituent water vapor and cloud
ice statistics and confront this methodology with in situ observations. Moreover, we study the link between
the skewness of the total water statistic and the settling of cloud ice into warmer and drier air, which con-
stitutes an irreversible sink for total water in cirrus. In this way, we quantify microphysically forced skewness
decay in support of efforts to advance statistical cloud schemes regarding ice phase processes. We describe
the observational basis in section 2, outline how cirrus total water statistics are modeled, compare results with
in situ measurements of water variables in tropical cirrus, and carry out the skewness analysis in section 3.
Section 4 concludes our study.

2. Aircraft Measurements

The Airborne Tropical Tropopause Experiment deployment from Guam (13∘N) in 2014 provided extensive
measurements of cold (mainly<200 K) cirrus in the tropical tropopause layer (TTL; Jensen, Pfister, et al., 2017).
Flights with the National Aeronautics and Space Administration Global Hawk aircraft profiled extensively
between about 14 and 18 km over the western Pacific. The aircraft spent more than 30 hr in cirrus clouds, with
instruments measuring temperature, water vapor, and cloud microphysical properties (Woods et al., 2018).
The cirrus clouds sampled were primarily formed in situ in the TTL well away from deep convective systems.
The Airborne Tropical Tropopause Experiment water vapor and total water measurements included here were
made using the National Oceanic and Atmospheric Administration water instrument, a two-channel tunable
diode laser-based hygrometer (Thornberry et al., 2015).

Temperature, water vapor, and cirrus cloud microphysical properties were measured in the Arctic winter on
board the Russian aircraft Geophysica during the European Polar Stratospheric Cloud and Lee Wave Exper-
iment combined with the European Space Agency’s Environmental Satellite validation experiment in 2003.
All Arctic flights were made from Kiruna in northern Sweden (68∘N). Midlatitude observations were per-
formed aboard a Learjet during the CIRRUS campaigns in 2003, 2004, and 2006 from Hohn, Germany (54∘N;
Krämer et al., 2009; Schiller et al., 2008). Total water and water vapor were measured using the Lyman-𝛼
photofragment fluorescence hygrometers Fast In-situ Stratospheric Hygrometer (Meyer et al., 2015) and Flu-
orescent Airborne Stratospheric Hygrometer (Khaykin et al., 2013), respectively. Data taken in middle- and
high-latitude cirrus have been merged into an extratropical data set to obtain a sample size large enough for
robust statistical evaluation.

3. Results and Discussion
3.1. Total Water Statistics
To build total water statistics for pure ice clouds, we consider three water variables in terms of mass mixing
ratios: vapor (qv), cloud ice (qi), and total water (qt = qv + qi). We view PDF(qt) as a joint probability density of
its vapor and cloud ice parts:

PDF(qt) = ∫ dqv PDF(qv) PDF(qi = qt − qv) . (1)

As illustrated in Figure 1, we make the assumption that the presence of cloud ice constrains qv locally to ice
saturation, that is, qv ≃ qs. This does not hold during short-term ice formation events (Kärcher & Jensen, 2017).
For the purpose of this study, we identify the vapor PDF with a delta distribution:

PDF(qv) = 𝛿(qv − qs(T)) . (2)

In stark contrast to liquid-phase clouds, water vapor mixing ratios within cirrus may depart significantly from
qs: ice nucleation from supercooled aerosol particles (those with the highest freezing thresholds) occurs
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Figure 1. Schematic illustrating our methodology to build a total water PDF representing cirrus. The PDF is formulated
in terms of water mass mixing ratios, q, and decomposed into a vapor distribution, PDF(qv ), and a cloud ice distribution,
PDF(qi). The cloud area is characterized by a temperature distribution, PDF(T). The Lagrangian history (curved arrow) of
each cloudy parcel (box) and microphysical processes including ice crystal formation and sedimentation determine local
qi values. Water vapor deposition and sublimation processes leave qt invariant but dampen cloud-scale supersaturation
fluctuations causing qv to stay near the local ice saturated value, qs(T). Gravitational settling of ice crystals (vertical
arrow) constitutes an irreversible loss of cloud ice. PDF = probability density function.

within 1.5–1.7qs (Koop et al., 2000) and ice crystals can survive conditions as dry as 0.6qs (Ström et al., 2003).
However, aircraft studies show that the majority of relative humidities measured inside many cirrus types
tend to be near ice saturation (Jensen, Thornberry, et al., 2017; Krämer et al., 2009; Ovarlez et al., 2002). Local
vapor-ice thermodynamic equilibrium is attained at time scales that decrease in proportion to the integral
radius, defined as the product of the ice crystal number density and the mean ice crystal size (Korolev & Mazin,
2003). Except in cirrus regions with small integral radii, vapor-ice equilibrium is established rapidly (within
10 min; Kärcher et al., 2014). Equilibration times for deviations from ice saturation can become considerably
longer (up to 2 hr) for thin TTL cirrus (Jensen et al., 2013; Rollins et al., 2016). Steady state ice supersaturation
may be accounted for in equation (2) by replacing qs → fqs with f > 1; here we fix f = 1.

We assume that in-cloud temperatures are normally distributed with a mean value, Tm, and standard devia-
tion, 𝜎T :

PDF(T) = 1√
2𝜋𝜎T

exp

[
−1

2

(
T − Tm

𝜎T

)2
]
. (3)

While temperature fluctuations within cirrus may be caused by gravity wave activity, variability in T , embodied
in 𝜎T , can also be generated by radiative heating and cooling, generating small-scale convection, predomi-
nantly in optically thick cirrus.

While knowledge of the in-cloud temperature distribution supposedly suffices to estimate PDF(qv) as sug-
gested above, this is in principle not longer the case for PDF(qi). The ice content in every cloud element is
determined by its supersaturation history and associated microphysical processes including ice nucleation,
growth, sublimation, and sedimentation (Figure 1). Therefore, we expect a distribution of cloud ice amount
at any given T . Such variability is seen in in situ observations that also suggest that mean cloud ice mass con-
centrations in nonconvective cirrus correlate well with local T (Luebke et al., 2013; Schiller et al., 2008). With
decreasing T , less water vapor is available for deposition and mean cloud ice content decreases.
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Given T , we model the cloud ice statistic as a Gamma distribution:

PDF(qi) =
𝜆𝜇+1

Γ(𝜇 + 1)
q𝜇

i exp(−𝜆qi) , 𝜆 = 𝜇 + 1
qi,m(T)

(4)

with the temperature-dependent scale parameter 𝜆, the shape parameter, 𝜇, and the Gamma function, Γ(x).
Parameterizations for mean, nonconvective cloud ice mixing ratios for midlatitude and Arctic cirrus and for
tropical cirrus, qi,m(T), are taken from Schiller et al. (2008; their Table 2). We fix 𝜇 = 1∕3 and note that the
sensitivity of PDF(qt) to this parameter is small.

Introducing the temperature statistic, PDF(T), carrying out the integration over qv and another over T
transforms equation (1) into

PDF(qt; Tm, 𝜎T , 𝜇) = t ∫ dT PDF(T) PDF(qi = qt − qs(T), T) , (5)

with a normalization constant, t . Equation (5) assumes that in a cloud element at temperature T , the vapor
stays at ice saturation and the probability to find an ice content qi, constrained by qt , is distributed around
the mean value, qi,m(T). The total water statistic from this model is unimodal. Its skewness depends on how
different PDF(qi) are superimposed and can only be evaluated numerically.

To judge the realism of this approach, we compare in Figure 2 modeled PDF(qt) to those of nonconvective
cirrus observed in tropical and extratropical regions (section 2). While the model tends to underestimate the
high qt tails, the shapes of the unimodal distributions are very well replicated. In both cases, qv is the dominant
contribution to qt near qt,m. However, this may not be a universal feature of PDF(qt), rather the partitioning
between vapor and cloud ice amount will be a function of cloud age. For instance, initial cloud ice mass is
typically large in convectively generated anvil cirrus (e.g., Figure 8 in Schiller et al., 2008) but will diminish over
time due to sedimentation. Moreover, qi dominates qt at high qt values and is therefore mainly responsible
for the heavy tail of PDF(qt). For this reason, we expect a tight relation between the distribution skewness and
cloud ice settling, hence qi.

Potential problems affecting the data-model comparison include (i) the width,𝜎T , of PDF(T) and (ii) parameter-
ized qi,m values. Concerning (i), using the observed 𝜎T values in equation (3) worsens the agreement between
observed and modeled PDF(qt), which is why we regard 𝜎T as a fit parameter for this comparison. The fit-
ted 𝜎T values deviate from those directly obtained from the data (tropical: 1.45 K; extratropical: 0.63 K). This
difference is small (0.25 K) for the tropical cirrus case but significant (0.87 K) for the extratropical cirrus contain-
ing larger ice crystals. This suggests that factors other than temperature also contribute to vapor variability,
such as supersaturation changes induced by ice crystal sedimentation. Regarding (ii), if qi,m(T) does not cap-
ture actual mean ice water contents (IWCs) well, different parameterizations could be applied, for example,
modeled tails of PDF(qt) increase by enhancing qi,m.

Observed PDF(qi) are reasonably well approximated by Gamma distributions. The instrumental detection
limit is apparent in the tropical case due to overall lower qi values. Some in situ measurements indicate that
cirrus qi statistics exhibit bimodality, with a second mode appearing at the low qi tail of PDF(qi) (Luebke
et al., 2013). While it is interesting to develop a deeper understanding of how microphysical processes act
together to shape these distributions and disentangle this impact from the impact of data sampling, such
subtle deviations from the assumed unimodal PDF(qi) at the lowest qi values do not affect PDF(qt) much.

We recall that our model has not been designed to provide a best fit to aircraft data but rather to build con-
fidence in the understanding of processes affecting total water variability in cirrus. This said, the agreement
between predicted and observed total water statistics, in particular the PDF shape, is very encouraging. We
continue studying how the distribution tail evolves with time when affected by ice crystal sedimentation.

3.2. Ice Microphysics
The mass mixing ratio of cloud ice is related to IWC via IWC = 𝜚qi, the mass of cloud ice per unit volume of air.
Here 𝜚(p, T) is the mass density of air, and p is the air pressure. A simple budget equation for IWC takes the
form

dIWC
dt

= P − L, L = IWC
𝜏

, 𝜏 =
(Δz∕2)

V
, (6)

KÄRCHER ET AL. 9966



Geophysical Research Letters 10.1029/2018GL079780

Figure 2. Probability density functions of (top row) water vapor, (middle row) cloud ice, and (bottom row) total water
content in nonconvective cirrus sampled with aircraft at (left column) low latitudes and (right column) middle latitudes
and the Arctic. Shown are in-cloud PDFs derived from the measurements (stepped curves) and total water PDFs from
the model (solid). Measured temperatures were sampled within 197–202 K (tropical cirrus) and 222–226 K
(extratropical), leading to the mean values of pressure and temperature used to constrain the model PDFs as indicated;
measured mean mass mixing ratios of water variables are also indicated. All PDFs are normalized to unity. Standard
deviations used to evaluate the model temperature statistics are estimated such that the resulting ice saturated water
vapor statistics match the observed PDFs. TTL = tropical tropopause layer; PDF = probability density function.

where P and L denote source and loss terms for IWC, respectively. We assume that the level of supersaturation
is low enough to prevent ice nucleation from occurring and changes in IWC by depositional growth are small
(P = 0), consistent with the cloud staying close to thermal equilibrium. The IWC loss term is determined by ice
crystal settling out of the cloud layer into ice-subsaturated air, Δz is a measure of the vertical cloud depth, V is
the particle sedimentation velocity—interpreted as a mass-weighted terminal fall speed of a size-dispersed
population of cirrus ice crystals, and 𝜏 is the characteristic time scale of irreversible loss of ice water due to
sedimentation. IWC is assumed to be homogeneously distributed in the layer, so the average distance ice
crystals must settle before being removed is Δz∕2. To parameterize V for an ice crystal ensemble, we follow
Heymsfield (2003) and choose the power law dependence:

V = a ⋅ IWCb ≡ V⋆

(
IWC

IWC⋆

)b

, (7)

with coefficients a and b varying across cirrus types. To estimate L, we use b = 0.24, IWC⋆ = 10 mg/m3,
and V⋆ = 55 cm/s for a relationship that approximates in situ measurements across tropical and midlatitude
ice clouds (Figure 11c in Heymsfield, 2003). More detailed parameterizations of V are available (e.g., Mitchell
et al., 2011), but their application requires knowledge of ice crystal size and habit distributions, which are not
available for most measurements considered here.
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Figure 3. (a) Normalized ice water content, IWC/IWC0, and skewness, 𝜍(t)∕𝜍0, versus scaled time, (t−t0)∕𝜏0, evaluated
with a fall speed parameter b=0.24. (b) The respective normalized 1∕k decay times, tIWC

1∕k
∕𝜏0 and t𝜍

1∕k
∕𝜏0, as a function of

k. Initial time scales 𝜏0 range between about 0.25−0.5 hr for Δz=1 km, depending on T according to Table 1.

It is instructive to quantify typical values for P and L. In a series of cloud-resolving model simulations, Köhler
(1999) injected cloud ice over several hours into a Δz = 2-km-thick layer at rates P = (40–200) ppm/hr to
simulate anvil cirrus formation. Using equation (7) with the parameters given above leads to a sedimentation
loss time scale 𝜏⋆ = (Δz∕2)∕V⋆ ≃ 0.5 hr. We estimate L < 200 ppm/hr, roughly in line with the cloud simula-
tions that indicate the buildup of qi values up to 100 ppm in the cloud layer. At later stages in the absence of
cloud ice production, L decreases as IWC diminishes.

3.3. Skewness Relaxation Due to Sedimentation
Prognostic equations for higher-order PDF(qt) moments better constrain total water PDFs in statistical cloud
schemes and help remove empiricism in their mathematical formulation (Schemann, 2014). Convective
detrainment of frozen liquid cloud water producing upper level anvil cirrus increases the skewness of PDF(qt)
(Tompkins, 2002). The same may happen after in situ ice crystal nucleation and subsequent depositional
growth, but likely to a smaller degree, since aerosol particles have a small liquid water content. Skewness
diminishes due to settling of cloud ice, small-scale horizontal mixing and turbulent dissipation, and large-scale
subsidence forcing cloud dissolution.

In the absence of a skewness (𝜍) source, we parameterize the temporal evolution of 𝜍 due to sedimentation
as a Newtonian relaxation:

d𝜍
dt

= − 𝜍

𝜏
, 𝜏(t) =

𝜏0

(IWC(t)∕IWC0)b
, 𝜏0 =

(Δz∕2)
a ⋅ IWCb

0

, (8)

with the time-dependent IWC loss time scale 𝜏 taken from equations (6) and (7), since we regard the sedimen-
tation loss of IWC as the only factor affecting skewness decay. Initial values of IWC and 𝜍 have a subscript 0.
We focus on part of an ice cloud’s life cycle between times t0 and t, where P = 0 and assume that it evolves in
a uniform environment, that is, Δz, p, T = const. In a more comprehensive description of skewness decay, in
which IWC changes are evaluated consistently with supersaturation, the associated total loss rate is defined
as the sum of 𝜏−1 values from all loss sources.

The corresponding solution of equations (6) and (7) reads

IWC(t)
IWC0

= 1
[1 + b(t − t0)∕𝜏0]1∕b

. (9)

KÄRCHER ET AL. 9968



Geophysical Research Letters 10.1029/2018GL079780

Table 1
Characteristic Time Scales Describing IWC and 𝜍 Decay Stages for a Range of Air Temperatures, T

T (K) p (mb) IWC (mg/m3) V (km/hr) t𝜍
1∕2

(hr) tIWC
1∕2

(hr) t𝜍
1∕10

(hr) tIWC
1∕10

(hr)

200 179 0.60 1.00 2.09 0.38 18.80 1.54

205 195 1.14 1.17 1.79 0.33 16.07 1.32

210 212 1.98 1.33 1.57 0.29 14.07 1.16

215 231 3.19 1.50 1.40 0.25 12.54 1.03

220 250 4.83 1.65 1.26 0.23 11.36 0.93

225 270 6.90 1.80 1.16 0.21 10.42 0.86

230 292 9.42 1.94 1.08 0.20 9.67 0.80

235 315 12.36 2.07 1.01 0.18 9.06 0.75

240 339 15.66 2.19 0.95 0.17 8.56 0.70

Note. Air pressure, p, varies adiabatically with T . Initial values for mean ice water content, IWC, and ensemble
fall speeds, V∝IWCb (using b=0.24), are also given. Mean IWC values represent nonconvective cirrus probed in
aircraft measurements. Time scales are evaluated for Δz=1 km and scale ∝Δz.

The temporal decay of IWC is slower than exponential, since 𝜏 increases with diminishing IWC. Inserting
equation (9) into equation (8) leads to

𝜍(t)
𝜍0

= 1
1 + b(t − t0)∕𝜏0

. (10)

The times over which IWC and 𝜍 decay to 1∕k of their initial values are given by (k > 1):

tIWC
1∕k = 𝜏0

kb − 1
b

, t𝜍1∕k = 𝜏0
k − 1

b
. (11)

Equations (9) and (10) are displayed in Figure 3. IWC diminishes within few hours, potentially allowing super-
saturation to increase and thereby ice crystal nucleation to occur within the cloud area, prolonging the
cloud’s life time. By contrast, skewness decays considerably more slowly, leading to much larger decay times,
especially for large k (in aged cirrus).

We list in Table 1 the times t1∕k for k = 2 and k = 10 characterizing short-term and long-term stages of
decay, respectively. These results confirm that signatures of skewness may be seen for many hours and that
IWC decays considerably faster than 𝜍 , by a factor (kb − 1)∕(k − 1); see equation (11). The t1∕k values exhibit
a marked temperature dependence via IWC0 that enters the initial IWC loss rate due to sedimentation, 1∕𝜏0;
see equation (8).

According to equation (7), V = aIWCb, and a tenfold increase in IWC increases V only by a factor of 10b = 1.7.
This insensitivity of the ice crystal ensemble fall speed to the IWC is caused by the low value of the parameter b,
which does not vary much (Heymsfield, 2003). In the idealized case of a monodisperse population of spherical
particles, b = 2∕3, equation (7) reverts to Stokes’ exact solution for fall speeds of spheres in a viscous flow
(Lamb & Verlinde, 2011), if the parameter a is properly chosen. In this case, the sensitivity (susceptibility) of V
to changes in IWC would be larger.

Combining equations (9) and (10) eliminates the time dependence and allows the decaying skewness of
PDF(qt) to be diagnosed as a function of IWC or V :

𝜍

𝜍0
=
(

IWC
IWC0

)b

= V
V0

. (12)

This relationship connects a bulk cloud property and the power law parameter related to the terminal fall
speed of the ice crystal population to the skewness of the total water statistic. An immediate implication
of equation (12) is that the susceptibility of skewness to changes in IWC, d ln(𝜍)∕d ln(IWC) = b, is small.
According to the above, we expect the susceptibility to be larger in thin cirrus clouds prevalent at the tropical
tropopause, since they contain a large fraction of quasi-spheroidal ice crystals (Woods et al., 2018), implying
larger b.
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4. Summary and Outlook

In this study, we analyzed for the first time probability distributions of total water within cirrus clouds based on
aircraft measurements. To parameterize the effect of clouds on temperature and moisture fields and the radi-
ation balance, statistical cloud schemes link physical processes to such distributions. However, it is generally
difficult to formulate microphysical source and sink terms for higher distribution moments such as variance
and skewness. Observations presumably face considerable challenges in capturing high-order moments of
total water distributions, as large amounts of data are required for accurate and statistically robust evaluation
of PDF tail extremities.

We devised a model to parameterize such distributions based on knowledge of in-cloud temperatures alone
and demonstrated its performance by comparing its results with in situ data. We specified the effect of ice crys-
tal sedimentation on the skewness of cirrus total water statistics. Provided in the form of a sink term affecting
the temporal evolution of distribution skewness, this result may prove useful for advancing statistical cloud
schemes, as it provides a link between a crucial microphysical process affecting cirrus (cloud ice settling) and
an important macrophysical model variable (cloud fractional coverage) in a physically consistent manner.

By studying characteristic decay times for IWC and total water distribution skewness due to ice crystal sedi-
mentation in the absence of associated production terms, we conclude that cirrus IWC typically decays more
than fivefold faster than skewness. The time scale analysis suggests that sedimentation is an important ice
cloud dissipation mechanism, rapidly diminishing the ice content within few hours. We expect this to hold in
the presence of ice crystal depositional growth in aging cirrus, which increases cloud ice content and therefore
enhances the efficiency of sedimentation losses relative to an unforced cloud. In the absence of ice growth,
sedimentation becomes less efficient over time because ice crystals with smaller mean sizes have lower fall
speeds. This manifests itself in sedimentation loss time scales that increase over time. The consequences of the
interplay between deposition growth and sedimentation for the lifetime of high ice clouds, including the pos-
sibility of new ice formation, remain to be explored. Our methodology may be extended to include effects of
ice nucleation and growth, making it a useful tool for observation- and model-based cirrus life cycle analyses.
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